The discovery of transcriptional modules by a two-stage matrix decomposition approach

نویسندگان

  • Huai Li
  • Yu Sun
  • Ming Zhan
چکیده

MOTIVATION We address the problem of identifying gene transcriptional modules from gene expression data by proposing a new approach. Genes mostly interact with each other to form transcriptional modules for context-specific cellular activities or functions. Unraveling such transcriptional modules is important for understanding biological network, deciphering regulatory mechanisms and identifying biomarkers. METHOD The proposed algorithm is based on two-stage matrix decomposition. We first model microarray data as non-linear mixtures and adopt the non-linear independent component analysis to reduce the non-linear distortion and separate the data into independent latent components. We then apply the probabilistic sparse matrix decomposition approach to model the 'hidden' expression profiles of genes across the independent latent components as linear weighted combinations of a small number of transcriptional regulator profiles. Finally, we propose a general scheme for identifying gene modules from the outcomes of the matrix decomposition. RESULTS The proposed algorithm partitions genes into non-mutually exclusive transcriptional modules, independent from expression profile similarity measurement. The modules contain genes with not only similar but different expression patterns, and show the highest enrichment of biological functions in comparison with those by other methods. The usefulness of the algorithm was validated by a yeast microarray data analysis. AVAILABILITY The software is available upon request to the authors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene expression The discovery of transcriptional modules by a two-stage matrix decomposition approach

Motivation: We address the problem of identifying gene transcriptional modules from gene expression data by proposing a new approach. Genes mostly interact with each other to form transcriptional modules for context-specific cellular activities or functions. Unraveling such transcriptional modules is important for understanding biological network, deciphering regulatory mechanisms, and identify...

متن کامل

Scenario-based modeling for multiple allocation hub location problem under disruption risk: multiple cuts Benders decomposition approach

The hub location problem arises in a variety of domains such as transportation and telecommunication systems. In many real-world situations, hub facilities are subject to disruption. This paper deals with the multiple allocation hub location problem in the presence of facilities failure. To model the problem, a two-stage stochastic formulation is developed. In the proposed model, the number of ...

متن کامل

I-13: Transcriptome Dynamics of Human and Mouse Preimplantation Embryos Revealed by Single Cell RNA-Sequencing

Background: Mammalian preimplantation development is a complex process involving dramatic changes in the transcriptional architecture. However, it is still unclear about the crucial transcriptional network and key hub genes that regulate the proceeding of preimplantation embryos. Materials and Methods: Through single-cell RNAsequencing (RNA-seq) of both human and mouse preimplantation embryos, ...

متن کامل

Identification of Prognostic Genes in Her2-enriched Breast Cancer by Gene Co-Expression Net-work Analysis

Introduction: HER2-enriched subtype of breast cancer has a worse prognosis than luminal subtypes. Recently, the discovery of targeted therapies in other groups of breast cancer has increased patient survival. The aim of this study was to identify genes that affect the overall survival of this group of patients based on a systems biology approach. Methods: Gene expression data and clinical infor...

متن کامل

Two-stage Production Systems under Variable Returns to Scale Technology: A DEA Approach

Data envelopment analysis (DEA) is a non-parametric approach for performance analysis of decision making units (DMUs) which uses a set of inputs to produce a set of outputs without the need to consider internal operations of each unit. In recent years, there have been various studies dealt with two-stage production systems, i.e. systems which consume some inputs in their first stage to produce ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 23 4  شماره 

صفحات  -

تاریخ انتشار 2007